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Abstract

This study addresses the challenge of achieving optimal preventive maintenance within power
systems, aiming to strike a harmonious balance between reliability and costs. The primary focus
is on unraveling the intricate relationship between preventive maintenance expenditures and the
failure rate of essential transmission components, with a specific emphasis on transformers in
substations. We contribute to the existing literature by offering two key insights. Firstly, we
establish a theoretical foundation for determining the optimal level of preventive maintenance,
which can be extended across various electricity facilities. By scrutinizing the relationship be-
tween preventive maintenance costs and failure rates, our goal is to identify the investment level
that guarantees a dependable power system while minimizing financial burdens. Secondly, we ex-
plore the functional form that accurately characterizes the link between preventive maintenance
costs and failure rates. The diminishing marginal rate of failure, contingent on various functional
forms, highlights the variability of optimal preventive maintenance expenses. Utilizing Lasso
regression, we identify the functional form that optimally characterizes the relationship between
outage occurrences and maintenance costs. These insights extend well beyond the confines of
the Korean power industry, offering a sustainable approach to managing transmission facilities
and enhancing the overall stability and efficiency of global electricity networks.
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1. Introduction

A stable and reliable power supply plays a pivotal role in sustaining economic activities. It is widely

recognized as a fundamental element for ensuring energy security and fostering economic growth

(Ateba et al., 2019; Neelawela et al., 2019). The significance of a stable power supply is particularly

important for the Republic of Korea (hereafter referred to as Korea) due to the unique characteristic

of its electric grid being isolated (see Figure 1). Unlike some countries with cross-border power

grid interconnections, Korea’s geographical location on the Korean Peninsula in Northeast Asia

places it between China (to the west with the Yellow Sea) and Japan (to the southeast with East

Sea and Korea Strait), with North Korea located to its north (Kim et al., 2020). This geopolitical

configuration results in the absence of interconnections with neighboring countries, making the

maintenance of a self-reliant and robust power supply infrastructure of paramount importance to

meet the nation’s energy demands and ensure energy security (Kim et al., 2020).

Achieving a stable power system heavily relies on the reliability of generators, transmission,

and distribution facilities (U.S. Department of Energy, 2016). However, ensuring such reliability

demands substantial investments in preventive maintenance costs, which may have adverse effects

on the economic performance of power companies and efficient allocation of resources (Espiritu

et al., 2007). For example, the Korea Electric Power Corporation (KEPCO) exemplifies this sce-

nario, making significant investments in preventive maintenance costs to uphold a certain level of

reliability. A study by Kim et al. (2020) emphasized that power plants in Korea might be incurring

unnecessarily high preventive maintenance expenses, even though they already achieve the world’s

lowest forced outage rates for their generators.

This study aims to explore the intricate relationship between preventive maintenance costs

and the failure rate of transmission facilities, with a particular emphasis on transformers in sub-

stations1. Substation equipment, utilized for extended periods, undergoes gradual deterioration

due to aging and continuous operation, eventually impacting the overall system reliability. The

significance of equipment deterioration is particularly pronounced in substations, being the pivotal

1A transformer is an electrical device that transfers electrical energy from one electrical circuit to another circuit
or multiple circuits. A substation is a vital part of an electrical generation, transmission, and distribution system.
Substations are responsible for transforming voltage from high to low or vice versa, and they serve various other
essential functions. Electric power may flow through several substations at different voltage levels between the
generating station and the end consumers (Atwa, 2019). A substation may include transformers used to change
voltage levels between high transmission voltages and lower distribution voltages or at the interconnection of two
different transmission voltages (Atwa, 2019).
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junction point between generation, transmission, and distribution systems. Therefore, maintenance

is imperative to prolong the availability of substation equipment (Sudket and Chaitusaney, 2014).

By employing a Cox proportional hazard rate model (Cox, 1972) and considering various functional

forms ranging from linear to cubic, we thoroughly investigate the association between maintenance

costs and the failure of transformers. Our objective is to determine the optimal level of preven-

tive maintenance required to uphold a reliable substation system while taking into account the

trade-offs between the economic implications of maintenance investments and the reliability of the

transmission and distribution infrastructure.

This study makes three significant contributions to the existing literature. Firstly, we es-

tablish a theoretical framework for determining the optimal level of preventive maintenance for

substations, with the potential for extension to various types of electricity facilities. By investigat-

ing the correlation between preventive maintenance costs and substation failure rates, our goal is

to pinpoint the most effective investment level that guarantees a dependable power system while

minimizing financial burdens. Secondly, we delve into identifying the appropriate functional form

that accurately reflects the relationship between preventive maintenance costs and failure rates.

The diminishing marginal rate of failure can differ based on various functional forms, leading to

variable optimal preventive maintenance costs. Therefore, comprehending the underlying nature

of this relationship is essential for estimating the most suitable preventive maintenance costs to

ensure the reliability of transmission and distribution facilities. Our research casts light on these

vital aspects, offering valuable insights into power system maintenance and reliability. To deter-

mine a more fitting functional form that explains the connection between outage occurrences and

maintenance costs, we employed least absolute shrinkage and selection operator (LASSO) regression

(Tibshirani, 1997). This technique helps us discern the model that best elucidates the interplay

between these factors, addressing concerns such as variable selection and overfitting. These find-

ings hold significance not only for the Korean power industry but also for power systems globally,

facilitating the sustainable management of transmission facilities and contributing to the overall

stability and efficiency of electricity networks. Lastly, our study is instrumental in discussing the

optimal level of preventive maintenance spending and evaluating whether allocation towards pre-

ventive maintenance costs is appropriate or excessive. These analyses demonstrate the practical

application of the theoretical framework developed, emphasizing its potential relevance for diverse
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countries, and represent another contribution of this paper.

This paper is organized into seven sections. In Section 2, we present an overview of the

industry background, focusing on the power system in Korea to provide readers with the necessary

context. In Section 3, we introduce the conceptual model aimed at maximizing the net benefit from

investments in preventive maintenance spending on transmission facilities. The methodology used

to estimate the hazard model based on the data discussed in Section 4.3 is presented in Section

4. We describe the empirical model, which builds upon the conceptual framework introduced in

Sections 3 and 4. This model allows us to estimate the optimal level of maintenance costs for

transmission facilities in Korea and assess whether the current spending is unnecessarily high.

Section 5 presents the results of our empirical analysis, offering valuable insights into the optimal

preventive maintenance level for transmission facilities in Korea. Furthermore, we discuss the policy

implications of our findings and provide limitations of the study in Section 6.

2. Industry Background

As per the Electric Utility Act of Korea (https://elaw.klri.re.kr/), the electricity industry is

categorized into distinct sectors, including power generation, transmission, distribution, electricity

sales, and district electricity businesses. The transmission business is specifically defined as the

operation primarily focused on the installation and management of electrical facilities essential

for transmitting electricity generated in power plants to distribution operators. Korea Power Ex-

change (KPX), which operates under the umbrella of the Ministry of Trade, Industry and Energy

(MOTIE), is the sole transmission system operator (TSO) for electricity supply in Korea (Interna-

tional Energy Agency, 2023). Korea Electric Power Corporation (KEPCO), also majority-owned

by the government, is responsible for transmission facility management as the asset owner. Figure

1 presents Korea’s electric infrastructure in 2022, which was presented in International Energy

Agency (2023).

As of the end of 2020, the Korea Electric Power Corporation (KEPCO) operated a total of

2,868 power transformers in 877 substations (Electric Power Statistics Information System). In

the context of large-scale transmission substations responsible for transmitting power from power

plants to high-voltage transmission lines (765kV or 345kV), voltage conversion is a critical step.

This process involves the use of a 765kV/345kV transformer to lower the voltage and a subsequent
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Figure 1: Electric infrastructure in Korea
Note: Image is taken from International Energy Agency (2023)

345kV/154kV transformer to further adjust it. Near the demand points, a distribution trans-

former (154kV/22.9kV) is employed to decrease the voltage even further, allowing for effective

distribution to consumers. To supply power at the desired levels (380V or 220V), small-scale trans-

formers installed on utility poles in close proximity to consumers play a vital role. These power

transformers installed within substations specifically refer to the 765kV/345kV, 345kV/154kV, and

154kV/22.9kV transformer configurations.

Transmission and substation facilities consist of numerous devices, including overhead trans-

mission lines, underground transmission cables, transformers, circuit breakers, disconnectors, light-

ning arresters, and more (Atwa, 2019). Each device possesses unique characteristics, and the costs

associated with individual facilities are not separately managed. This makes it impractical to con-
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duct comprehensive analyses for each individual facility. Therefore, there is a need to limit the

scope of facilities and review them in order to measure the degree of quality improvement in rela-

tion to the costs invested in transmission and substation facilities. In this study, to enable efficient

analysis, the power transformer, considered the most crucial facility within transmission and sub-

station systems, was selected as the primary subject of analysis. The survival analysis method

was adopted to examine the factors influencing the failure rate. Failure in transmission facilities is

predominantly caused by natural disasters (24 out of 54 cases in 2021), making it challenging to

limit the targets of failure due to their wide distribution. Additionally, the allocation of costs be-

comes difficult. Taking these factors into consideration, transmission facilities were excluded from

the analysis, and power transformers, which are situated within confined spaces called substations

and allow for easy cost distribution, were chosen as the subject of analysis.

3. Conceptual Model

Suppose that investing in preventive maintenance leads to a reduction in the hazard rate (failure

rate) of transformers in substations. The hazard rate is denoted by the function h(m), where m

represents the level of preventive maintenance spending. We assume that h′(m) < 0 and h′′(m) > 0,

indicating that as the level of preventive maintenance increases, the hazard rate of transformers

in a substation decreases. However, with each incremental increase in preventive maintenance,

the marginal reduction in the hazard rate diminishes. In other words, as the level of maintenance

spending increases, the additional decrease in the hazard rate achieved by investing more in pre-

ventive maintenance becomes less significant. Panel A in Figure 2 represents the function h(m)

illustrating the relationship between preventive maintenance spending and the hazard rate. When

m = 0, h(m) = 1, implying that a transformer is certain to fail. In contrast, when m = m2, the

transformers only has a 25% chance of failure. As m approaches a very large value, the failure

probability converges to zero, i.e., lim
m→∞

h(m) = 0.

Suppose that the outage loss (explained below) remains constant at $c, which implies that

the expected gain from preventive maintenance with a cost of m will be given by the following

expression:

B(m) = c(1− h(m))︸ ︷︷ ︸
avoided outage loss

−m (1)
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Figure 2: Preventive Maintenance Spending and Benefits

where B(m) represents the net benefit from reducing the hazard rate of the substation by investing

m in preventive maintenance costs. Since h(m) in equation (1) denotes the hazard rate, 1− h(m)

represents the survival probability or reliability of the substation, that is, the probability of avoiding

outages. Therefore, c(1 − h(m)) corresponds to the (expected) avoided outage loss in monetary

terms. First order condition to maximize B(m) is

B′(m) = −ch′(m)− 1 = 0 → h′(m) = −1

c
(2)

Simply put, the optimal preventive maintenance spending is determined when the marginal reduc-

tion in hazard rate is equal to the inverse of the outage loss. Moving to Panel B of Figure 2, this

concept is visually depicted through the interplay of avoided outage cost, c(1−h(m)), maintenance

cost, m, and their differences, B(m) as in equation (1). The optimal maintenance cost is denoted

as m∗, which equates to h′(m) = −1
c (Panel B in Figure 2).

Outage loss in electricity transmission refers to the costs and negative impacts resulting from

disruptions or failures in the power supply, leading to temporary electricity loss for consumers and

critical infrastructure (Centolella, 2010). The literature on electricity outage costs is extensive,

with various studies conducted in different contexts. Woo et al. (2021b) specifically addresses

outage costs in residential areas, while Woo et al. (2021a) provides the estimation of outage costs
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in non-residential sectors. Both studies include a comprehensive literature review. It’s worth noting

that the present study, while not centered around estimating outage costs directly, will leverage

a simplified approach, elaborated further in the subsequent empirical sections, to approximate

outage costs based on previous research for example Woo et al. (2021b) for residential sector.

These estimates will be instrumental in determining outage cost, c in equation (1), and the optimal

preventive maintenance spending in the empirical sections of this research.

4. Empirical Strategies and Data

This section outlines the empirical methodologies employed for estimating the hazard function,

denoted as h(m) in equation (1), and for computing outage costs. These estimations are instru-

mental in discussing the optimal level of preventive maintenance spending and evaluating whether

KEPCO’s allocation towards preventive maintenance costs is appropriate or excessive. These anal-

yses demonstrate the practical application of the theoretical framework developed earlier, empha-

sizing its potential relevance for diverse countries. This practical application represents the primary

contribution of this paper.

4.1. Hazard Function

The core objective of this study is to explore the intricate connection between maintenance costs

and the incidence of failures in power transformers through the lens of survival data analysis.

Survival data analysis proves highly apt for scrutinizing time-to-event data, which pertains to the

duration leading up to an event, while accounting for multiple covariates that might impact the

event’s likelihood. In survival data analysis, the dependent variable reflects the time until the event

occurs, often measured in discrete and non-negative terms (Klienbaum and Klein, 2012).

Conventional regression analysis, predicated on a continuous dependent variable following

a normal distribution, proves unsuitable for survival data analysis due to the discrete and non-

negative attributes inherent to the dependent variable. Consequently, to effectively model and

estimate the intricate link between maintenance costs and the probability of failure cessation in

power transformers, we turn to survival data analysis techniques. Notably, we employ methods

like the Kaplan-Meier estimator (Kaplan and Meier, 1958) and the Cox proportional hazard model

(Cox, 1972). Through the lens of survival data analysis, we can discern how maintenance costs

influence the survival probabilities of transformers. This approach offers a nuanced perspective on
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the optimal level of preventive maintenance and its economic ramifications in ensuring a dependable

and efficient power supply system.

Incorporating survival analysis into this study entails addressing the concept of right-censored

data, a fundamental consideration in the field (Klienbaum and Klein, 2012). Right-censored data

pertains to observations that do not experience the event of interest within the designated analysis

period (Klienbaum and Klein, 2012). While we possess knowledge that these observations endured

throughout the study’s duration, the exact survival time eludes our grasp. In instances like these,

the utilization of specialized methodologies within survival data analysis becomes imperative to

accurately estimate and validate models during analysis. It is noteworthy that the dataset employed

in our study exclusively centers on transformers that encountered failures, thereby excluding any

instances of right-censored observations. However, given the dataset’s structure, where the survival

time functions as the dependent variable, as previously elucidated, it becomes a natural progression

to apply survival analysis models. Thus, the conduct of this analysis hinged on the adoption of

survival analysis models to navigate the research landscape effectively.

As previously mentioned, survival analysis is a methodology utilized for the examination of

survival data. This field commonly employs two approaches: the nonparametric Kaplan-Meier

estimator and the semi-parametric Cox proportional hazard model (Klienbaum and Klein, 2012;

Cleves et al., 2016). The Kaplan-Meier estimator is a nonparametric technique that avoids the need

for distributional assumptions, making it particularly useful for estimating survival probabilities

when continuous variables are not essential. However, its utility in elucidating survival probabil-

ities based on continuous variables, aside from categorical variables, is limited. In contrast, the

Cox proportional hazard model, a semi-parametric approach, assumes the proportional hazards

principle, implying that the hazard ratio remains consistent over time. While the model requires

the assumption of proportional hazards, it avoids distributional assumptions and is capable of inte-

grating both categorical and continuous variables (Klienbaum and Klein, 2012; Cleves et al., 2016).

Consequently, this study employed survival analysis techniques, encompassing the Kaplan-Meier

estimator and the Cox proportional hazard model, to facilitate its analysis.

Upon examining the current status of the transmission and substation operation, it is evi-

dent that there were no significant structural changes during the analysis period. Therefore, it is

reasonable to assume that the effects of the variables used in the analysis on failure mitigation or
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cessation remain constant throughout the analysis period, making the use of the Cox proportional

hazard model appropriate. Consequently, this study aims to investigate the impact of maintenance

costs on transformer failure cessation by complementary utilizing the Kaplan-Meier estimator and

the Cox proportional hazard model. The Kaplan-Meier analysis will examine various variables that

may influence failure cessation through graphical representations. Based on this analysis, a model

will be constructed to estimate the survival probability of transformers. The Cox proportional

hazard model will then be employed as a foundation to estimate this model.

Suppose that the hazard function represents the instantaneous probability of transformers

in a substation experiencing failure at time t, given that it has survived without failure until the

current time. Suppose that failures of a transformer are random events drawn from a particular

probability distribution function (PDF), f(t), where t is a duration of the transformer. The cumu-

lative distribution function (CDF), F (t) = Pr (T ≤ t), gives the probability that the transformer

failure has occurred by duration t. Note that, generally, the probability of failure will increase over

time.

It is convenient to work with the survival function such as

S(t) = Pr (T ≥ t) = 1− F (t) =

∫ ∞
t

f(u)du (3)

which gives the probability that the transformer failure has not occurred by duration t or the

transformer is still running at time t or, equivalently the probability of failing after t (Cleves et al.,

2016). If S(1200) = 0.75, it means that there are 75% of the transformers that are running at

t = 1200 (days), for example. Basically, S(0) = 1 (no transfer has failured), S(t) is a non-increasing

function, and S(∞) = 0 (eventually all the transformers fail). For a dataset with observed failure

times, t1, · · · , tk, where k is the number of distinct failure times observed in the data, the Kaplan-

Meier estimate at any time t is give by

S(t) =
∏

j|tj≤t

(
nj − dj
nj

)
(4)

where nj is the number of individuals at risk at time tj and dj is the number of failures at time tj .

The product is over all observed failure times less than or equal to t (Cleves et al., 2016).
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In the Cox proportional hazard (PH) model (Cox, 1972), an alternative characterization of

the distribution in equation (3) is given by the hazard function, h(t), defined as

h(t) = lim
∆t→0

Pr (t < T < t+ ∆t|T > t)

∆t
=
f(t)

S(t)
(5)

In words, the hazard function gives the instantaneous potential per unit time for the failure occur

given that the individual transformer has survived up to time t. Note that, as indicated in Klien-

baum and Klein (2012), in contrast to the survival function in equation (3), which focuses on not

failing, the hazard function in equation (5) focuses on failing, i.e., on the forced outage occurring.

Equation (5) can be modified to S(t) = f(t)
h(t) and thus specifying one of the three functions specifies

the other two functions. The hazard for transformer i at time t can be estimated by the Cox model

using the following form as discussed in Cleves et al. (2016):

h(t | x) = h0(t) exp (x′β) (6)

In this equation, the term h0(t) is an unspecified baseline hazard and exp (x′β) represents the

linear form of the model, similar to the estimated coefficients and covariates seen in conventional

regression analysis. The coefficient β in equation (6) represents the relative hazard ratio. For

example, if β is estimated as 0.1, a one-unit change in x would result in a 10.5% increase in the

hazard rate, that is, exp (0.1) − 1 = 0.105. Conversely, if β is estimated as −0.1, the hazard rate

would decrease by 9.5%, that is, exp (−0.1)−1 = −0.095. The regression coefficients are estimated

by maximizing the log partial likelihood (Tibshirani, 1996; Cleves et al., 2016):

L(β) =

n∑
i=1

x′j(i)β − log

∑
j∈Ri

exp (x′jβ)

 (7)

where xi is the vector of covariates for i transformer, Ri is the set of indices, j, with tj ≥ τi which

at risk at time τi. The index j(i) denote the transformers which failed at time τi.

The covariates included in the model are maintenance costs (in million won), substation

type (outdoor or indoor), substation voltage (345kV/154kV), and transformer age. Except for

maintenance costs and transformer age, the remaining variables are categorical. To examine the
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potential nonlinearity on failure cessation, various forms of maintenance costs were incorporated

into the model such as quadratic terms. The determination of the best functional form for the

Cox model depends on the relationship between the variables being examined. The final choice of

functional form should be guided by statistical significance, goodness of fit measures such as pseudo

R2, and the theoretical relevance of the relationship.

Tibshirani (1997) introduce the application of the Lasso (Least Absolute Shrinkage and Selec-

tion Operator) method in the context of the Cox proportional hazard model. The study addresses

the challenge of selecting relevant variables for inclusion in the Cox model while also dealing with

the problem of multicollinearity and overfitting. When including a regularization term in equation

(7), the resulting Lasso-Cox model (Tibshirani, 1997) can be represented as:

L(β) =
n∑

i=1

x′j(i)β − log

∑
j∈Ri

exp (x′jβ)

− λ p∑
k=1

|βk| (8)

where λ > 0 is a control parameter. It is particularly useful when dealing with datasets where

there are many potential predictor variables, and you want to identify the most influential factors

affecting time-to-event outcomes (Tibshirani, 1997).

4.2. Back of Envelope Estimate of Outage Cost

Numerous studies have been conducted to estimate the outage cost in the industrial and residential

sectors. These studies can be categorized into two main groups based on the data employed

for estimating the economic impact of electricity outages. The first category involves estimating

economic losses using publicly available data. The second category employs survey data to estimate

the willingness to pay (WTP) for avoiding an outage, as detailed in the economic theory behind

WTP approaches, which can be found in Gorman (2022). The comprehensive list of previous

research on outage cost estimation is provided and discussed in Kim and Cho (2017), Woo et al.

(2021a), and Woo et al. (2021b).

Estimates for residential outage costs vary significantly, ranging from under US$0.5 per kWh

unserved, based on the residential marginal electricity rate, to over US$10 per kWh unserved,

obtained through customer survey data using the contingent valuation (CV) method (Woo et al.,

2021b). Given the wide range of residential outage cost estimates and potential biases in CV
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survey data, Woo et al. (2021b) proposes a market-based estimation of a household’s outage cost

per kWh unserved, yielding an estimated range from US$0.12 to US$0.34 per kWh unserved.

These estimates will be instrumental in determining outage cost, c in equation (1), and the optimal

preventive maintenance spending in the empirical sections of this research.

4.3. Data

The dataset employed in this analysis was compiled from the failure records of all substations

managed by the Korea Electric Power Corporation (KEPCO) from 2008 to 2018. As the dataset

contains internal information, it is not publicly accessible. However, anonymized data can be made

available upon request. These failure records offer valuable information about the substations in

which transformer failures took place, including their associated power districts. Furthermore, the

dataset encompasses pertinent data about the age of the transformers that experienced failures.

In determining the maintenance costs for substations, the approach involves calculations at

the power district level, after which the costs are allocated among the substations within each

district. Consequently, the maintenance cost attributed to each substation is obtained by dividing

the annual maintenance cost allocated to the corresponding power district by the total number of

substations within that district. Moreover, the analysis takes into consideration the non-failure

days, which denote the duration in days from the previous failure of a transformer to the current

failure event. For the initial failure, the analysis period commences on January 1, 2008, as the

starting point of observation. These components of the dataset form the foundation for exploring

and understanding the relationship between maintenance costs and the failure rate of transformers

in substations.

Based on the data used in the analysis, we can summarize the key statistics of non-failure

days, maintenance costs, and the age of failed transformers by substation type and voltage, as

presented in Table 1. When examining non-failure days by substation type, it is evident that

indoor substations have, on average, approximately 406 days longer non-failure periods compared

to outdoor substations. This observation suggests that indoor substations are less susceptible

to external factors such as weather conditions, which can contribute to a more reliable operation.

Furthermore, in terms of voltage, high-voltage substations tend to experience more frequent failures

compared to low-voltage transformers. As Table 1 indicates, the average non-failure period of low-
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Table 1: Descriptive Statistics by Substation Type

Variable Mean Std. Dev. Min Max Obs.

Entire sample

Non-failure period (days) 1,276 1,102 1 3,821 274

Maintenance cost (million KRW/year) 86.6 40.6 4.1 260.9 274

Indoor substations

Non-failure period (days) 1,499 1,165 4 3,732 123

Maintenance cost (million KRW/year) 88.7 41.0 4.1 260.9 123

Outdoor substations

Non-failure period (days) 1,094 1,016 1 3,821 151

Maintenance cost (million KRW/year) 84.9 40.4 30.1 230.6 151

154 kV

Non-failure period (days) 1,373 1,116 4 3,821 200

Maintenance cost (million KRW/year) 86.2 40.8 4.5 260.9 200

345 kV

Non-failure period (days) 1,013 1,025 1 3,633 74

Maintenance cost (million KRW/year) 87.8 40.4 4.1 230.6 74

1. KEPCO internal data,
2. Substations with a voltage of 765kV depicted in Figure 1 as well as underground substations were
excluded from the analysis due to the limited number of available observations,
3. The average exchange rate in 2018 was 1 million KRW ≈ US$900. Consequently, 86.6 million KRW
is approximately US$77,940.

voltage (154kV) substations is 359 days longer than that of high-voltage substations. However, it is

important to note that among the total of 123 indoor substations, only 9 of them are high-voltage

(345kV) substations, with the majority being outdoor substations. Considering this imbalance,

it becomes necessary to investigate the influence of voltage on failure cessation by incorporating

interaction terms of the two dummy variables during model estimation.

Upon analyzing the maintenance costs of substations based on their voltage levels, it becomes

evident that the overall average maintenance cost (86.6 million KRW, approximately US$77,940)

remains consistent, regardless of the voltage. However, when considering the substation type,

indoor substations show slightly higher maintenance costs, amounting to approximately 3.8 million

KRW (approximately US$3,420) more than outdoor substations. Nevertheless, this difference is

relatively small, indicating that the maintenance costs for substations tend to be similar, regardless

of their type or voltage level.
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5. Results and Discussions

5.1. Hazard Function

Drawing upon the data analyzed earlier, two estimation methods, nonparametric and semiparamet-

ric approaches, were employed to explore the connection between substation failures, maintenance

costs, and other relevant covariates. To begin with, the nonparametric Kaplan-Meier estimator

(Kaplan and Meier, 1958) was utilized to examine the survival probabilities, as depicted in Figure

3. As shown in Panel A of Figure 3, we examined the survival probabilities based on the type of

substations. Outdoor substations had a survival probability of approximately 15% at 2,000 days,

whereas indoor substations exhibited a notably higher survival probability of around 35%, repre-

senting an approximate 20% difference between the two types. Panel B in Figure 3 presents the

survival probability by voltage type, 154 kV vs. 345 kV. In general, 154 kV substations have a

slightly higher survival rate, but this difference is not significant.

Moving on to Panel C in Figure 3, we explored the survival probabilities based on main-

tenance costs. Substations with higher maintenance expenses displayed a survival probability of

approximately 39% at 2000 days, while substations with lower maintenance costs exhibited a sur-

vival probability of about 19%. Note that maintenance costs greater than the mean value of 86.6

million KRW (≈ US$77,940) (Table 1) were classified as High, while costs equal to or below the

mean were classified as Low. It is also worth noting that the disparity in survival probabilities

between these two groups varied throughout the non-failure period, making it challenging to draw

definitive conclusions.

Moreover, to gain a more comprehensive understanding, we transformed the continuous vari-

ables, such as maintenance costs and transformer age, into categorical variables. However, analyzing

these variables as continuous variables would provide more valuable insights, allowing us to examine

the impact of a one-unit increase in these continuous variables on the survival probability. There-

fore, in order to investigate the influence of maintenance costs on substation failures, we intend

to employ the PH model, considering the continuous nature of these variables, to conduct a more

robust analysis.

The estimated results of the PH model, which includes maintenance costs and other covari-

ates affecting substation failures as described earlier, are presented in Table 2. The models can

be categorized into two groups: Model 1, which doesn’t consider power district fixed effects, and
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Figure 3: Survival probabilities
Note: Regarding maintenance costs, values greater than the median value of 86.6 million KRW (≈
US$77,940) were classified as High, while values equal to or below the median were classified as Low. As for
transformer age, it was categorized into two groups using the median age of 11 years.

Models 2 and 4, which incorporate power district fixed effects. Model 4 is the most robust model

employing the Cox Lasso technique discussed in equation (8). The estimation outcomes are con-

sistently similar across all models. Focusing on the estimated coefficients of categorical variables

related to substation characteristics, it becomes evident that the coefficient for indoor:154kV, rep-

resenting low-voltage indoor substations, is consistently estimated to be approximately −0.6 with a

significance level of 1% across all models. This implies that the hazard rate of indoor substations is

roughly 45% lower compared to high-voltage outdoor transformers. A similar pattern emerges for

outdoor:154kV substations, where the coefficient is approximately −0.4 and statistically signifi-

cant, indicating an around 33% lower hazard rate than high-voltage outdoor transformers. Notably,
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Table 2: Hazard Model Estimatesa, b

Model 1 Model 2 Model 3 Model 4

cost −0.009∗∗∗ −0.016∗∗∗ −0.034∗∗∗ −0.025∗∗∗

(0.002) (0.003) (0.008) (0.005)

cost2 0.0001∗∗∗

(0.000)

cost3 0.0000002∗∗

(0.0000001)

age −0.022∗∗ −0.023∗∗ −0.022∗∗ −0.022∗∗

(0.010) (0.010) (0.010) (0.010)

indoor:154kV −0.548∗∗∗ −0.609∗∗∗ −0.599∗∗∗ −0.597∗∗∗

(0.159) (0.198) (0.199) (0.199)

outdoor:154kV −0.474∗∗∗ −0.421∗∗ −0.408∗ −0.405∗

(0.175) (0.211) (0.212) (0.212)

indoor:345kV −0.401 0.405 0.314 0.366

(0.358) (0.531) (0.533) (0.531)

(outdoor:345kV)c

Fixed effect No Yes Yes Yes

Observations 261 261 261 261

Pseudo R2 0.144 0.379 0.394 0.391

Log lik. -1,174.7 -1,133.0 -1,129.8 -1,130.2
a Numbers in parentheses are standard errors; *, **, and *** indicate the significance at 10%, 5% and 1%,
respectively.
b The PH model estimates the equation h(t) = h0 exp (x′

iβββ), where h(t) is the forced outage at time t, x′
i is a

vector of covariates, and βββ is a vector of regression coefficients. A negative coefficient implies a longer expected
duration.
c Reference type of substation is presented in parentheses.

the coefficient for high-voltage indoor transformers, indoor:345kV, are not statistically significant

across all models.

The coefficients estimated for the age variable are close to the value of −0.2, indicating

that for each additional year of transformer age, there is an associated reduction of roughly 2%

in the hazard rate. This finding may appear counterintuitive. Commonly, one would anticipate

a positive coefficient for the age variable since machinery typically becomes more susceptible to

failures over time due to wear and tear, resulting in an increased likelihood of failure. A plausible

explanation for this can be found in the bathtub curve theory (Klutkey et al., 2003). According

to this theory, during the initial phases of machinery assembly and installation, the occurrence

of failures is relatively high due to trial and error. As time progresses, the equipment stabilizes,

resulting in a decline in failures. However, after a certain duration, wear and tear begin to take
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their toll, causing failures to rise due to component replacements and other factors. Examining our

data, it’s apparent that transformers with an age of up to 10 years constitute approximately 54% of

the entire dataset. Even within a narrower 5-year span, they still make up around 35% of the total.

This distribution suggests that a considerable portion of the dataset involves relatively recently

installed transformers. Consequently, the observed negative sign in the estimated age coefficient

can be attributed to this context, where recent installations dominate the data.

When examining the estimated coefficients for maintenance costs, their values vary based

on the chosen functional form, but they are statistically significant across all models. In models

assuming a linear functional form (Model 1 and Model 2 in Table 2), the coefficient for cost was

estimated as -0.009 in the case of the model without considering fixed effects (Model 1) and -0.016

when fixed effects were incorporated (Model 2). Including fixed effects, which account for regional

variations in outage occurrences (such as higher frequencies of outages in coastal areas compared

to urban areas), is considered more appropriate, as it aligns better with the data and enhances the

model’s accuracy, as indicated by the Pseudo R2 values. However, determining the definitive model

to explain the relationship remains challenging. Nevertheless, Model 3 appears to be a promising

candidate in terms of Pseudo R2. To further refine the functional form that better explains the

relationship between substation failure and maintenance costs, we explored various functional forms

using Lasso regression (Tibshirani, 1997), as discussed in equation (8). Model 4, as presented in

Table 2, represents the results of this Lasso regression analysis.

The estimation results clearly indicate that the impact of increasing maintenance costs dimin-

ishes, that is, diminishing marginal benefits of reducing hazard rate. This relationship is visualized

in Figure 4, which presents the predicted hazard rates and their corresponding maintenance costs

based on Models 2, 3, and 4 as outlined in Table 2. With an average maintenance spending of

86.6 KRW, the hazard rate is predicted to be 0.26 (Model 2), 0.09 (Model 3) and 0.13 (Model

4). It’s worth noting that the marginal change, the slope of the predicted hazard function, i.e.,

the approximation of h′(m) in equation (2), around the average spending, is relatively small, as

depicted in Figure 4, which are −0.004 (Model 2), −0.002 (Model 3) or −0.003 (Model 4).
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Figure 4: Predicted Hazard Rate and Marginal Changes

5.2. Balancing Reliability and Maintenance Cost

Let’s consider that Model 4 represents the typical hazard rate for substations in Figure 4. Addi-

tionally, let’s assume that the current average maintenance spending, which is 86.6 million KRW

(≈ US$77,940), represents the optimal expenditure that maximizes the net benefit derived from

avoiding outages, as presented in equation (2). The estimated slope of the hazard function at m

= 86.6 is approximately -0.003 (Figure 4). This suggests that the outage cost, denoted as c in

equation (2), would amount to 357 million KRW (≈ US$0.321 million) per year.2 In terms of prac-

tical ramifications, an average substation in Korea typically caters to around 28,400 households.3

Consequently, the outage cost per household per year could be 12,580 KRW per household (≈

US$11.30).

The question arises as to whether the estimated outage cost of 12,580 KRW (≈ US$11.30)

per household accurately reflects the actual outage cost. If the true outage cost is lower than

this estimate, it suggests that KEPCO is allocating excessive resources to maintain substation

2 Derived from equation (2), c = −1/h′(m).
3 In 2018, the total number of 154kV substations in Korea was 753, which supply electricity to residential sector, while
the number of households amounted to 205 million. This equates to an average of approximately 28,353 households
per substation.
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reliability. Conversely, if the actual outage cost is higher, it indicates that KEPCO is investing

less than the optimal maintenance cost level. However, due to the absence of a specific study on

Korean households to provide a precise estimate of outage costs, making a definitive judgment is

challenging.

One potential approach is to rely on estimates from previous studies, such as Woo et al.

(2021b) for U.S. households. Nevertheless, it’s important to recognize that direct comparisons

might yield misleading conclusions, given the variations in household characteristics, climate con-

ditions, and other factors that can influence electricity consumption. Nonetheless, we believe that

conducting such a comparison is valuable. It’s worth noting that Woo et al. (2021b) estimated the

market-based outage cost per kWh for the U.S. residential sector, resulting in a range from US$0.12

to US$0.34 per kWh. To convert the outage cost estimates in Woo et al. (2021b) to an annual basis,

we use the U.S. household average electricity consumption (10,632 kWh per year (EPA, 2020))

and outage statistics (7.5 hours in 2021 (EPA, 2023)), which results in approximately 9.1 kWh

of lost electricity per year due to outages. With Woo et al. (2021b) estimates, this equates to an

outage cost ranging between US$1.10 and US$3.20 per household per year. Clearly, this range is

considerably lower than the estimated US$11.30 from above, KEPCO might be allocating excessive

maintenance costs or investing in unnecessarily high levels of maintenance on average.

6. Conclusion and Policy Implications

In this study, we have delved into the critical domain of preventive maintenance spending for electri-

cal substations. Our analysis was underpinned by the overarching goal of optimizing the allocation

of resources to ensure grid reliability while minimizing costs. We developed a comprehensive con-

ceptual model that elucidates the intricate relationship between preventive maintenance spending,

substation hazard rates, and outage costs. Through empirical estimation, we sought to uncover

insights that would inform decision-makers at KEPCO regarding the efficiency of their maintenance

expenditure.

Our empirical analyses have yielded several noteworthy findings. First, we observed dimin-

ishing returns in the reduction of hazard rates as preventive maintenance spending increased. This

suggests that while higher maintenance investments enhance substation reliability, the incremental

improvements in reliability diminish with each additional unit of expenditure. Second, our esti-
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mations suggest that the current average maintenance spending of 86.6 million KRW might be

excessive when compared to the outage costs for U.S. households. However, it’s crucial to recognize

that direct comparisons could lead to misleading conclusions. This is due to variations in house-

hold characteristics, climate conditions, and other factors that can significantly influence electricity

consumption.

The contributions of this study can be summarized as follows:

• Concetptual framework: This study provides a conceptual framework for balancing reliability

of substation and the preventive maintenance expenditure using the hazard rate modeling

and outage cost considerations.

• Empirical insights: Through empirical analysis, the study sheds light on the actual impact

of preventive maintenance spending on substation reliability with covariates including dimin-

ishing returns of the maintenance cost

• Methodological contribution: This research contributes methodologically by employing haz-

ard rate modeling and Cox Lasso regression to estimate the relationship between maintenance

spending and reliability. These methods can be applied in similar studies in the utility sector

and beyond.

Two significant caveats should be highlighted. Firstly, the findings of this study are derived

from a dataset specific to Korea and may not be directly transferable to all regions or utility

companies. Substation maintenance requirements and outage costs can vary significantly due to

local conditions, infrastructure age, and other contextual factors. Consequently, the results should

be generalized cautiously. Secondly, the challenge of estimating outage costs to determine whether

KEPCO is overspending on maintenance costs has inherent difficulties and subject to uncertainties.

Relying on estimates from other countries introduces potential disparities due to variations in

electricity consumption patterns, climate conditions, and consumer behavior. Therefore, further

investigation into outage costs for Korean households and a comprehensive evaluation of the trade-

off between reliability and maintenance expenses are necessary and should be considered as a key

focus for future research.
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